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VIL. The Extinction of Sound in a Viscous Atmosphere by Small Obstacles of
- Oylindrical and Spherical Form.
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IntrODUCTION.—The theory of the incidence of waves of sound in a non-viscous air
upon small obstacles of cylindrical or spherical form is well known to students of
mathematical physics; it has been treated in Lord Ravremer’s ¢ Theory of Sound,
and in Prof. Lawms’s < Treatise on Hydrodynamics.” The corresponding problems for a
viscous air have not, however, been worked out, and this paper is devoted to an
investigation of these problems. The solutions of the equations of vibration of a
viscous gas with reference to cylindrical and spherical surfaces were given by
Prof. LaMB in a paper entitled ““On the Motion of a Viscous Fluid Contained in a
Spherical Vessel” and published in the ‘ Proceedings of the London Mathematical
Society " in 1884. It is easy to obtain solutions suitable to the case of divergent
waves ; the functions involved are Bessel functions with a complex argument. An
analytical expression for the secondary waves diverging from the obstacle is obtained
without difficulty. It then remains to find an expression for the loss of energy to the
VOL. CCX.—A 465. 4.5.10
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240  MR. C. J. T. SEWELL : EXTINCTION OF SOUND IN A VISCOUS ATMOSPHERE

primary waves. In calculating this loss of energy it is necessary to consider the
dissipation of energy by friction in the immediate neighbourhood of the obstacle in
addition to the energy which is carried away to a distance by the secondary waves.
This was pointed out to me by Prof. Lawms, at whose suggestion this paper was
written. In obtaining an expression for the energy dissipated by friction I at first
made use of the dissipation function. This method led to exactly the same results as
that finally adopted, but the mathematics involved were cumbrous, and the physical
ideas, on which they were based, were somewhat obscure. Another disadvantage of
this method was that it was necessary to calculate separately the scattered and the
dissipated energy. I have to thank Prof. Lams for his kindness in pointing out to
me the method of calculating the lost energy adopted in this paper. The result has
been to make the paper more clear and readable.

I have succeeded in obtaining expressions for the energy lost to the primary waves
in the case of spherical and cylindrical obstacles. As might be expected, the problem
of the cylindrical obstacle presents greater analytical difficulty than that of the
spherical obstacle, and in the former case it is necessary to obtain different
approximate expressions according to the diameter of the obstacle. The results for
wires of 107! em. radius and for wires of 10™* ecm. radius can be obtained without
much difﬁculty, but when the radius of the wire is of order 107° cm. it is necessary
to perform very laborious calculations in order to arrive at intelligible results. The
energy lost to the pumaly waves is, in all cases, very great compared with what
would be lost in a non-viscous air, but the ratio of the lost energy to that incident
upon the obstacle is at most of order 1077

In the case of spherical obstacles the difficulties of approximation are not so great,
as in the case of cylindrical obstacles the loss of energy is far greater than in a non-
viscous air, but, as beforve, the ratio of the lost energy to that incident upon the
obstacle is at most of order 107%

It is possible to extend the results obtained for a single obstacle to the case when
the waves of sound are incident upon a large number of similar obstacles. This has
been done by Lord Rayrereu for the corresponding problem in a non-viscous air ; the
same method has been adopted in this paper. It should, however, be borne in mind
that the results so obtained are valid only when the obstacles are so sparsely
distributed that the space occupied by the obstacles is a small fraction of the total
volume. The ihvestigation has some practical interest. It has been asserted that
the suspension of a large number of parallel wires in a hall or lecture room will
improve the acoustic properties of the room. According to the ordinary theory of a
non-viscous air the effect of any such arrangement of wires would be inappreciable.
From the results of this paper it also appears that the viscosity of the air is not
sufficient to account for the alleged phenomenon.

The results in the case of spherical obstacles are of greater interest, since they are
applicable to the consideration of the effect of foggy weather upon the propagation
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and audibility of sound. If the diameter of the drops of water in a dense fog is
assumed to be ‘02 mm., there is no appreciable alteration in the audibility of sound ;
but, if the diameter of the drops of water is ‘002 mm., the presence of fog is distinctly
prejudicial to the audibility of sound. The former case is in agreement with
TyYNDALL'S observations on the subject.

In conclusion I desire to thank Prof. Lams for much kind advice and encourage-
ment in the writing of this paper.

§1. In a viscous gas, if u, v, w be the components of the velocity at any point
x, y, z of the fluid referred to fixed rectangular axes, and if p be the pressure at this
point, the equations of vibration may be written in the form

o 1dp 9 o9

T e VR

o 13dp % 41y 99 | .
T pOaJJrV’v ay R e
ow _ 1 dp 2

T pu—a—+ Vw+%v .

where p, is the equilibrium density, » is a small constant of dimensions L1
depending on the viscosity, 3 has been written for div (u, v, w), and terms of the
order of the square of the velocity have been neglected.

By a method very similar to that* used in the case of an incompressible fluid it is
found that the total rate of dissipation of energy within any closed surface S is
given by

wlm-

m (a+b+ef de dy dz+ dvp, ‘f‘”(fﬁn? +8) da dy dz

, _ dg® Ll om, n|dS . (2)
+2vp0ﬂ(lu+mv+nw) (a+b+c)dS vaH dndS+4vp0“ Y

& m L

where ¢ is the resultant velocity at any point of the fluid, dn denotes an element of
the normal to the surface S, I, m, n are the direction cosines of this normal drawn
inwards in each case from the surface element 8§S. Further, a, b, ¢, & 7, { are given
by the relations

a:éﬂ b=§2 c=8——w ]
ox’ oy’ 0z l :
- (3).
gg=W_v o _O0u_w ¢ _a}_’__é’l_‘J
oy 0z’ oz ox’ or oy

When there is no motion of the gas parallel to the axis of z, and the motion is the

* Lamp’s ¢ Hydrodynamics,” p. 540.
VOL. COX.—A. 21
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242 MR. C.J. T. SEWELL: EXTINCTION OF SOUND IN A VISCOUS ATMOSPHERE

same in all planes perpendicular to this direction, the expression (2) for the dissipation
of energy per unit length of the axis of z takes the form

2F = dup, || (0t D) die dy +dup, [ [ & die dy
+2vp, [(lu-i—mv) (a+b)ds— Vpoj ds+4vp0 j (lv—mu)lds . . . (4)

where ds is an element of the curve bounding the region in question.

§2. We now proceed to obtain a solution of the equations of motion which shall be
applicable to the case when the motion in all planes perpendicular to the axis of z is
the same, and when further there is no motion parallel to this axis.

In this case the equations of motion take the form

%

2_371:__1*82)4_ v+t 03

ot Po ox a ’
v _ 139 T t

o _ P

at 00 ay + V1 /U+3V J

where § = au 0% and V2 denotes the operator a

ox 8y ’ ! 5 oy

The equation of continuity takes the form

Bogm0. . . . @

ot

where squares of the velocity and other quantities of the same order have been
ignored, and s denotes the condensation.
1f we neglect the effects of conduction and radiation of heat, we may write

p=]30+C2P03 e e (3,

where p, is the equilibrium pressure and c is the velocity of sound.
Eliminating p and s from equations (1) with the help of (2) and (3), we obtain

o*u _ ;2 03 20U )

5 = ¢ a*“m*gaal

5 2 ) J2g ‘} (4
v _ 209 2 OV

57 = oy TV

These equations will be satisfied by

_ 9% % _9%_% 5

w= 3’ 1>—-ay A (5),
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provided ¢ and s are functions satisfying the equations

2
Do IV L (6),
R ()

If we assume a time factor e, these equations take the forms
(VZ+h) b =0, (Ve+B)y=0. . . . . . . (8),
| where 7° and £* are given by
W = o*/(+Fwa), B=—wfv . . . . . (9),(10).

We shall for convenience suppose % to be equal to that root of equation (9) which
reduces to ofc when v is zero; & will be taken to be equal to (ofr)"?.e ",

With these conventions the solution of the equations (8), which represents waves
of sound diverging from the origin, is given by

¢ = AD, (hr)+ £ A,D, (hr) cos (nd+a,)
n=1

. (11),
¥ = BD, (k) + 3 B,D, (k) sin (n3+8,)
1

n=

where for convenience the time factor has been omitted and where D, ({) is given by

D, (¢) = 2{log 2=y~ }um) 1, ()~ Y. (O}

J. ({) and Y, ({) have their usual significance as Bessel functions, and A,, B,, «,, and
B. are arbitrary constants.

It need hardly be remarked that to obtain the actual expressions for ¢ and v it is
necessary to multiply the expressions contained in (11) by ¢, and to equate ¢ and
to the real parts only of these products. For the sake of brevity we shall usually
omit, when possible, the time factor ¢, ’

Since, in the case of air, v is a small quantity, when expressed in cm. sec. units, it
is clear from (9) and (10) that for all audible sounds |k| will be large compared with
|h|. In fact, at any ordmary distance » from the origin the ¥ terms in (11) will
become insensible owing to the factor exp. {—(4a/v)¥? 7}

For plane waves propagated in the negative direction of the axis of «, the solution
will be given by

¢ = Cetre, y=0 . . . . . . . . (12),

where, as before, only the real part of ¢ is to be taken into account.
' 212
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244 MR. C. J. T. SEWELL: EXTINCTION OF SOUND IN A VISCOUS ATMOSPHERE

§3. The Incidence of Plane Waves of Sound upon an Obstructing Cylinder.—We
are now in a position to consider the effect of a cylindrical obstacle upon a_train of
waves propagated in a direction perpendicular to the axis of the obstacle and incident
upon it.

We take the axis of the obstructing cylinder as axis of z, and suppose the incident
sound to be propagated in the negative direction along the axis of . Then, asin (12)
of the last article, we may assume for the incident sound the expressions

¢O —_ echx’ 1!‘0 —_ 0

Expanding in series of Bessel functions, we obtain
o = Jo(hr) + § 20, (hr) cosnd, =0 . . . . . (1)
n=1

The scattered waves will be symmetrical about the axis of 2, or 3 =0, and
consequently we may assume for them the forms

¢ = A, D, (h)+ S {A,D, (hr) cosnd},
n=1

d= 3 {B,D,(k)sinnd}. . . . . . . . . . . ()
n=1
At the surface of the obstacle the radial and tangential components of the velocity
must vanish ; hence we must have

0 (do+ % _ _ a(¢0+(b1) ?_‘/ﬂ _
"= +8.9_O’ T +frar—-0 N )

when 7 = a, if @ is the radius of the cylinder.
In order that the boundary conditions (3) may be satisfied, we must have

Aha Dy (ha) = —hal; (ha)
or

ADy(ha) = =T, (ha) . . . . . .. (4),

and in general for n>0

Aha D, (ha)+nB, D, (ka) = —2vhad, (ha)} (
. 5).

nA, D, (ha)+BkaD, (ka) = —20nd, (ha)

These equations (4) and (5) are sufficient to determine the various constants in the
expressions (2) for the scattered sound. In the process of approximating to the values
of these constants by means of equations (4) and (5), we shall confine ourselves to the
case when ha is a small quantity ; in other words, we shall assume that the dimensions
of the obstacle are small compared with the wave-length of the incident sound. The
other case, when the dimensions of the obstacle are large in comparison with the
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wave-length, presents exactly the same difficulties as occur in the similar problem in
connection with the theory of a non-viscous gas.

We shall also consider especially the case when the viscous gas is the air of the
atmosphere ; in this case » is a small quantity about ‘132 in cm. sec. units, and
consequently we may regard ov/c® as a small quantity for all wave-lengths. Since
ov[c? is small, we may write very approximately from (9), § 2,

7L=z—-(1—%w'u/02). R () 2

We must now obtain approximations to the values of the constants in the expressions
for the scattered sound by means of equations (4) and (5). For this we shall need
the approximate values of the Bessel functions involved in these equations. For
convenience we shall write them down.

When ¢ is small, we have for all values of n>>0,

7y ! .
D, (0 = 2_(_7_:7_1)_ {7+ less important terms

/() = — ZM ey

J. (§) = 2,‘; ! {"+ terms containing higher powers of {

JJ(f) = 27——(—7;1—_—_—1—)—1 {"'+ terms containing higher powers of {

Closer approximations are

Dy () = 2 {~(log 4L+y+ hem)+3C* (log L+y +hr—1)} |
2 2 (®)
D) = 20"~ M (og by rhm—D) Do) =227+ |
Also we have
Jo(0) =1-38,  J4(0) = 3L(1-38), J()=3C01—-%8) . . (9)
Now, on eliminating A, from equations (5), we obtain
B, [ha . ka D, (ha)D,’ (ka)—n*D, (ha) D, (ka)]

= —20nha {J, (ha) D,/ (ha)—D, (ha) J,/ (ha)}.
Further

LD/ O-D(0 3 (1) = 2.3/ 0T (0.} = =20

by a well known result in the theory of Bessel functions.
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Consequently we obtain
B,[ha. ka D, (ha) D, (ka)—n*D, (ha) D, (ka)] = 2o . . (10).
o

Now ha is a small quantity, and consequently we may use the approximations (7);
substituting for D, (ka) and D,’ (ha) from (7), we obtain

= 20 0B, (ha D (k) 40 D, (ka)} = 22
a

or

2y !
20 g ke D, (ka) B, = 22 o
w

w
Hence we obtain as a first approximation

o0 1 Irar
e G D ()

B, =

Similarly, by elimination of B, between equations (5), we obtain

A, [ha . ka D', (ha) D', (ka) —n* D, (ha) D, (ka)]
= =20 [ha . kaJ’, (ha) D, (ka) —n*J, (ha) D, (ka)].

Using the approximate values given in (7), we obtain

2"
o

_ _ hn n
ﬂnhm%mmwwwagww

(n—1)

— _on aha™ D, (ka)
A, = 2L‘22”%!(70—1)!']),,_1(76&)' S0 (12)

or

for all integral values of n > 0.
By a similar process, but carrying the calculation to a higher degree of approxi-
mation by means of (8) and (9), we have

D, (ka) —31°a®{2D, (ka) =D, (ka)} (18)
D, (ka) —Lh*a? (log Lha+y+Lur) D, (ka) + thia? Dy (ka) = Y77

Ay = —Yur . Vo

Let us consider first the case when |ka| is small. In this case it will be sufficient
to derive the value of A, from (12). Hence we have approximately

o Dy (kat)
— _1,-72,2102
A, = —dulia Dy (Fa)’
Writing for convenience
k= Ne"V"  where \=(afv)"* . . L (14),
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and using the approximations for D, () and D, ({) given in (8), we have
D, (kat) = 2[~ (log I +y+Lir) =t (log Ia+y +hir—1)],
s

D, (ka) = 2[20%a "2+ 1]
w

Substituting these expressions for D, (kw) and D, (ka) in the above formula for A,,
we obtain
_ e 1—41\%a?
Na® log $ha+y+tur+uiNa? (log Iha+y + b —1)

A.1=

In general, it will tend to suflicient accuracy if we take

A =— %g{ 7 {log Na+y+tew}™ . . . . . . . (13)
in the case when Ao is small.
Similarly we obtain from (11) the approximation
B ha loo L 1)1
) = mm( og FNa+y+tur)™ . . . . . . . (16),
when Ao is small.

Let us next consider the case when A« is large.
Since |ka| is great, we may write

_ _%___ \V2 —L(ka+1/41r){ L 9. }
Dy (k) = (wlca) ¢ b Ska (8ka)* )’

\

Y= — _2~_ v —L(ka+1/47r){ 15 1051.2}
D, (ka) = —(2)" o

Substituting these expressions in the formula given for A, in (13), we obtain
approximately

\ . 160 112482 :
A, = hurhia? { = g+ (s~ og —21—ha+'y+%m+%)} .

When Aae™'*" is written for ko, this reduces to
A = 5urlPa® [ 1+ /2. (Na) ™t =302 (log $ha+y+3)
—{/2. Na) "+ (o) P+ 4P’} .. (17).
As a first approximation to the value of B, we find in the case when \a is large

B ] v va c(ka+1/4m)
1=2cw%e N ¢ 1) )

The approximate value for A,, obtained from equation (4) with the help of (8) and
(9), is easily seen to be

Ay = —fwlPa® {1+30Pa’ (log $ha+y+dar—3)} . . . . (19)
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§4. Now that we have approximated to the values of the various constants involved
in the expressions for the secondary waves, we can proceed to estimate the additional
rate at which energy is being dissipated in the space surrounding the obstacle. This
additional rate of dissipation will be equivalent to the rate at which energy is being
lost to the primary waves in consequence of the presence of the obstacle. Now, if we
consider a region bounded internally by the obstacle and externally by a cylindrical
surface coaxial with the obstacle and of radius R, it is clear that the difference of the
rates at which energy is being carried across the internal and external boundaries of
this region will be equivalent to the rate of dissipation of energy within it.

Hence, if p,, ¢, denote the pressure and the radial velocity at any point due to the
primary waves alone, and if p,, ¢, denote the pressure and radial velocity due to the
secondary waves alone, it is easily seen that the dissipation of energy within a
distance R of the obstacle is given by

[eep)@ra)ds (),

where it has been assumed that ¢,, ¢, are both measured inwards, and the integration
is to be taken round the boundary of the surface » = R.
Now the dissipation of energy due to the primary waves alone is given by [ p,q, ds.
Hence it follows from (1) that the additional dissipation of energy due to the
presence of the obstacle 1s given by

jpogldé+jplqods+jyolglds. @)

Now the rate at which energy is being carried across the surface » = R is —[p,q, ds,
and hence from (2) it follows that the total additional dissipation of energy due to
the presence of the obstacle is expressed by

jpoqlcls+jplgocls. S AR (3),

where the integration is to be taken round the boundary of the surface » = R.*

Since opfc® is in all cases a small fraction, it is clear from (6), § 3, that R may be
great compared with the wave-length of the incident sound and yet such that o*»R/c®
is a small fraction. In this case we may neglect the imaginary part of AR in
expressing the value of ¢, and ¢, at the surface » = R. Also, if oR/c is great, it
follows that |kR| or AR is very great, since their ratio is the small quantity (ov/c?)"*
Since, when |kR| is great, D, (kR) approximates to the value

9 \12
[Pt ORI VY ) = AT 2
kR, ’

* This method of finding an expression for the loss of energy was kindly suggested to me by
Prof. Lams. I had previously obtained the same results by means of the dissipation function; but the
work involved was very cumbrous.
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we see that the { terms in the expression for the secondary waves are inappreciable
at the external boundary owing to the exponential factor exp. (—\R/,/2).

We shall suppose then that R is great compared with the wave-length of the
incident sound and yet such that o®»R/c? is small.

Let us now return to the consideration of (8). At the external boundary, » = R,
we may write approximately

2 N\1/2 «
b = <~7-T—]—L—R> 3 [A,,L cos ne IR

where square brackets are used to denote that only the real part of the expression so
enclosed is to be considered.

Hence we obtain
1/2 o

—_— a¢1 — < 2 > n+1 t (ot —hR~1/m)
e i — R EO[A”L cosnd.e 1,

| 0951 R +1 —AR-Y
p=—7"= h<th) 3 [A0* cos ny L et AR

n=20

Using these expressions for p; and ¢; we obtain

12 .
Pt Py = — <771?R> (poorgo— kpo) Z [A,,e"“ cos mdet IR (4),
Again, since AR is great, we have from (1), § 3, approximately
12 12
¢y = <;l?—f{> sin (AR +17) cos ot +2 2 <7;] R> sin (AR + 47 —$nar) cos (ot +Enm) cos nI.

Hence we obtain

1/2

1/2 .
Py = p00'< hR> sin (AR +4m) sin o-t+2poo- 2 < hR> sin (AR + 1w —4nm)

sin (ot + %) cos ny
and

9 \l2 @ 9 \l2
@ =—h <7Th-—R> cos (AR +4m) cos o-t—-ZhE1 <7771_R> cos (hB+Lm—inm)

cos (at+4nr) cos nd.

Combining these expressions for p, and ¢, we find without difficulty

12 12
P Ty < hR) cos (at—hR—}m)+2hpyor ( hR)
S (=) cos (ot—hR—%m) cos nd.
n=1
Substituting in (4) and integrating with respect to 9 we obtain
2m . @
j (P19 +poq)) RS = 4pyo 3 [(—=)"A** cos (ot —hR—1ar) et t=FR="m]
0 n=0

VOL. CCX.—A. 2 K
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of which the mean value is

zPOG"EO[(-)"Aan] N ()

This last expression, then, represents the loss of energy to the primary waves in
consequence of the presence of the obstacle.

From the value of A, obtained in (12) of § 3 we see that the summation (5) consists
of a series of terms arranged in descending order of magnitude. Consequently, in
determining its value we shall limit our attention to the first two terms of the
summation. Hence the total loss of energy to the primary waves is given very

approximately by
2poo WA+ AL . o (6),

Let us first consider the case when Aa is small. In this case we have, from (17)
and (19) of § 3,

A =—- g;y'n'(]og FNa+y+tur),

Ay = —Iala {1+ 11Pa? (log tha+y+Humr—3$)1.
Hence

[LAy+ A = frhiat— %—25 7 (log Fha+v) {(log tha+y) ++7} 7.

Now for small values of the radius & the first term of this last expression is small
compared with the second, and consequently may be neglected. Hence the loss of
energy to the primary waves is given approximately by

2
—2p, 2w (log Phaty) {(log Phatyf 457’} o (7),

in the case when A« is a small fraction.
The ratio of this last expression to po”afc, which represents the rate at which
energy is incident in the primary waves upon the obstacle, is given by

2wy

—a—(log%)w&+y){(log21—)\00+y)2+-1lg772}"1 N )]

We may notice from this last result that, when A is small, the proportion of the
incident energy, which is lost to the primary waves, is very nearly proportional to
the reciprocal of the radius, since the logarithmic terms will change more slowly as
the radius changes. Hence, as in (7), the total energy lost to the primary waves is
almost independent of the dimensions of the obstacle, provided these are small enough
to satisfy the conditions under which the results (7) and (8) have been obtained, and
provided also that we limit our attention to obstacles whose dimensions are of about
the same order of magnitude. It might have been anticipated that the energy lost
by friction in the neighbourhood of the obstacle would, in the case of very small
obstacles, alter very slowly with the dimensions of the obstacle, and consequently
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that the effect upon the primary waves of very small obstacles would be almost
independent of the dimensions of the obstacles, provided they were limited to be of
the same order of magnitude. |

Let us now turn to the case when \a is great. In this case we have approximately,
from (17) and (19) of § 3,

Ay = Larh?a? (14 /2 (\a) ' —3h*a? (log $ha+y+5) —u{y/2 (M) + 7 (\a)~* + Lal’a®}
Ay = —dah?a? {1+4h2a? (log Mha+y+Lur—3)}. |
Hence we find approximately
[lA+A,] = fsmhta + §rhita + h°a® { /2 (\a) ™' + T (\a) 7%},
= Hrhtat+ Inhia® { /2 (\a) ™" + % (Aa) 72}

Substituting this value for [tA,+A,] in (6), we obtain, when Ao is great, for the
total loss of energy to the primary waves the formula

Srtpohtat + mpyal’a® { /2 (Na) 7t + L (M) %)

The ratio of this to p,o’afc, which represents the rate at which energy is incident
upon the obstacle, is given by

3 P[P+ /20" W P e+ dvf(ca) . . L L (9),

which gives the proportion of the incident energy which is lost to the primary waves.

The first term in (9) is independent of the viscosity of the medium, and is obtained
in the ordinary theory of a non-viscous air. The second and third terms of (9)
represent the additional loss of energy to the primary waves consequent upon the
viscosity of the medium. Further, since the ratio of the second to the third term of
(9) is of order \a, it follows that the latter may be disregarded. Hence we see that,
since o does not enter into the second term of (9), the additional proportional loss of
energy consequent upon the viscosity is almost independent of the magnitude of the
obstacles. In other words, the actual loss of energy in the primary waves due to
friction is proportional to the radius of the obstructing cylinder if this be sufficiently
Jarge. This last result is clearly what might have been expected on physical
grounds.

Tt remains to consider the case when \a is neither very small nor very great. In
this case it is impossible to approximate to the values of the Bessel functions involved.

From (13) § 3 we have

D, (ka)
A, = —fuh’a?
D, (ka)
Hence it follows that ’
0?4 E, (Xae‘/*‘”) _ D, v()\ae“/*”’)}
[A.l] - 27Th {E (}\ae‘“”') Do ()\ae_l/*”')

2 K2
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where E,(0) = 727{(105_; 2—y+tum) I, (O)—-Y. (0},

and square brackets are, as before, used to denote that the real part only of the
expression so enclosed is being considered.

Hence we have
[A1] = _%L'Irh%bz (DZEO“DOE2) lDO{ I

Now [lA,] = #&7’h'a’, and consequently it may be neglected in comparison
with [A,].
Hence the loss of energy to the primary waves is given by

Lurpyatiel? (DyE;—DSE,) | Dy | 72

The ratio of this to pya?afc is -
%mic‘”_(DoEz—Don)|D0;—2. S (10),

which therefore represents the proportion of the incident energy, which is lost to the
primary waves.

On p. 253 will be found a table giving the ratio of the lost energy to that incident
upon the cylindrical obstacle in a number of different cases. For wires and
cylindrical rods of comparatively large radius it is necessary to use the formula (9) ;
the results for wires of radii 10 em., 1 em., and ‘1 ecm. have been deduced from this
formula. The formula (8) is applicable when the radius of the obstacle is very small,
and the results for wires of radius 1072 cm. have been obtained from it. When the
radius of the wire is of order 1072 em., neither of these approximate formule is
applicable, and it becomes necessary to calculate the results directly from (10) ; the
value of the ratio of the lost energy to that incident upon the wire has been worked
out in this case for only a few values of the wave-length on account of the laborious
nature of the work involved.

It should be added that in the table given on p. 253 A denotes the wave-length of
the incident sound measured in centimetres, and K denotes the ratio of the lost
energy to that incident upon the obstacle.

I have also worked out the values of K for wires of different diameters in the case
when the wave-length of the incident sound is 250 ecm. The results are arranged
below :—

A = 250 cm.,
@ .o . . 1 em. *1 cm, -05 cm. +01 cm. +005 cm. *001 cm.
K. . . .. <16 1072 -15 102 *21 102 *26 102 *32 1072 +86 1072
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§ 5. Extension to the Problem of a Number of Cylindrical Obstacles.—Let us
suppose that there are n parallel wires per unit area of a plane perpendicular to their
common direction. At a distance = from the axis of any one of these wires, great
compared with the wave-length of the incident sound, the secondary waves due to
that wire will be given very approximately in all cases by

, = Ay Dy (Ar)+ A, D, (hr) cos 9.

Since r is great, we may write for all values of

2 \'* y
D, (h?“) — <_/_) gro b+

mnr

and ¢, takes the form

whr

9 \12 .
b = (Ay+ Ay cos 9) <_-.> o i)

Along the course of the primary waves ($ = ) this reduces to

o \E
¢l=(AO—A1L)<;—> e (),

Consider now the wires which occupy a thin stratum dx perpendicular to the course
of the primary waves. Let AP be the section of this
stratum by a plane at right angles to the wires and let O be
the point, at which the vibration is to be estimated at a

p great distance from the stratum.

> If AP =z, the element of area is di . dz, and consequently

the number of wires cutting it is n . dx . dz.

" < ‘ A Also, if OP =7, AO = —x, then =24 22 and

vdz = rdr.

The resultant at O of all the secondary vibrations, which

issue from the stratum, is by (1)

® /o \1/2 1/2
2n dx .{_E(AO—AIL) (—772—})/> o~ (hrtl/sm) 7%%.

Writing » = —x+7, we obtain
o da <7%>1’2(A0—A1L) gt | %(_‘_2%-’%_2 .
In evaluating this last expression we may assume 7/ to be very small; it then
takes the form
o0 dar (%)”2(1;0—&‘) ot () rendy L ()
Now M '
rn‘”“’e“"“’ dn =2 g:e”’“’g dv.

0
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Also by a well known result we have

. - 1/2
JO cos (hn?) dv = L sin (hv?) dv = (é—;—a\/\ .

Consequently

” ~1/2,,—thn — N[ v
Lfr] e™Mdy = /2. (1 L)<4h> .

Substituting this result in (2) and restoring the time factor, we obtain for the
resultant at O of all the secondary vibrations coming from the stratum di

—2n . da. (Ay+Ag) Bl 0 0o (8).

When M is small, A, is great compared with A,; neglecting A, and using the
expression for A, given in (15), § 3, we obtain instead of (3)

2n . d&') e (log )\a+.y+ L7T) 1 L(hx+a-t)
of which the real part is

20 de V7 {(log $\a-+) cos (ha+ot)+ b sin (ha-+ o)) /{ log Iha+y)+577)  (4)

To this is to be added the corresponding expression for the primary wave
¢, = cos (L +ot).

The coefficient of cos (hx+ot) is thus altered by the obstacles in the layer da from
unity to

1420 de T (log ;)\a+y)/{ log Ihai+y ) +57°).
Thus, if E be the energy in the incident waves, we have

dE[E = 4n.dz"" (log )\Ob-}-'y)/{(log Nt y) .

Integrating this, we obtain
’ E = Eoe_ax,

where E, is the energy in the primary waves at incidence and « is given by
«= —4" log )\0&+'y)/{(log Datyf 4. . . . . ().

The coefficient of sin (hx+at) in (4) gives the refractivity of the medium as
modified by the wires. If 8 be the retardation due to the wires of the stratum d,

5= 1 d%/{(log It y)+ 7).
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Hence, if u be the refractive index as modified by the wires

p—l=%m%/{aog%m+y>2+—1—1-6—w2} @
Hence we have

p/{locr—)\a+y Lz S (4]

where p denotes the ratio, assumed small, of the volume occupied by the wires to
the total volume.
Let us now consider the case when Ao is great. In this case we have, from (17)

and (18) § 3
A +Ay = LurlPa? [1+2 /2 (Na) ' —30%a? (log $ha+y++%
—{2/2 (\a) '+ F (o) 2+ 3al’a’} ).

Substituting this expression for A,+:A, in (3), we obtain for the resultant at 0 of
all the secondary vibrations coming from the stratum dx

¢ = —ramrdz. ha?[1+2,/2 (\a) ' —3h*a? (log tha+y+%

—1{2.,/2 ()\a)“ +Z ()\a)*2+%ﬂh2w2}] o iz +a)
of which the real part is

—inm.de.ha? {2./2 (\a) '+ % (Na) 2+ Fnh’a’} cos (kw+ ot)
+inw.de.ha® {142 /2 (\a) ' —31%a® (log Yha+y++%)} sin (he+ot) . (8).
To this is to be added the expression for the primary waves
¢o = cos (hx+ot).

The coeflicient of cos (hz+at) is thus altered by the obstacles in the layer d from

unity to
1—nmha® {2./2 (\a) '+ (\a) 2+ Enh*a®} du.
Hence, if E be the energy in the incident waves, we have
dE/E = —nmha® {2 /2 (\a) ' +% (\a) 2+ 47h’a®} dx.
Integrating this, we obtain
E = Ege—,
where
a = nwha? {2./2 (Aa)'+ 5 (\a) 2+ Eah’a’}.
When o/c and (ofr)" are substituted for & and \ respectively, this takes the form

a=2,/2nr.a. 0-1/2v1/3/c+»~n7ru/c+4,n7ro-w“/c e (9)
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The second term of (8) gives the refractivity of the medium as modified by the k
wires. If 8 be the retardation due to the wires of the stratum dx

3= %nwa2{1+2\/2 (Nar)™? %; (log foafc+y+% }
Hence, if u be the refractive index as modified by the wires, we have approximately

p-l=1{1+42/20a)p. . . . . . . . (10)

where p denotes the ratio, assumed small as before, of the volume occupied by the
wires to the total volume.

If the waves of sound traverse a medium in which a number of parallel wires are
arranged, then the reciprocal of a will determine the distance which the waves will
travel before the intensity of the sound is diminished in the ratio of 1fe. For sound
waves of wave-length 10 cm. passing through a medium, in which there are 100
parallel wires of radius 107? cm. per unit area of a section perpendicular to the wires,
this distance is 47 cm. For greater wave-lengths the distance is greater. It seems
hardly probable that any arrangement of wires could improve the acoustic properties
of a room unless some other factor than viscosity is taken into account. Of course, if
n is made sufficiently great, the reciprocal of a may become very small; but it seems
probable that it would be difficult to arrange the wires so closely that n should be
greater than 10%. If it was possible to arrange wires of radius 107* cm. so closely that n
was 10 then the intensity of sound of wave-length 40 cm. would be diminished in
the ratio 1/e after passing through a thickness of less than 4 cm. Such a contrivance
could hardly, however, be carried out in practice.

§ 6. Problems Relating to Spherical Obstacles.—We require first a solution of the
equations of motion suitable to such problems. Differentiating the equations of
vibration (1), § 1, with regard to «, v, z respectively and adding, we obtain with the
help of (2), § 2,

% o 5 08
— = B ) B
7 Vi + 30V e (1)
It we now assume a time factor e, this equation takes the form
(V*+1?) s =0, where &I = d[(F+iwo) . . . . (2),(3)

Also the equations of motion (1), §1, may with the help of (2) and (3), §2, be
written in the form v

(V) u = (=128, (v )w = (kz-hz)g;;, (V4 k)w = (=122 . (a),
where
¢ =wh s = —1?div(u, v, w) and K= —wfp. . . (5),(6)
These equations (4) are satisfied by

(u, v, w) = grad ¢,
VOL, CCX.—A, 2 L
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where ¢ is any solution of the equation
(V*+h)p=0 . . . . . . . . (7).
The complete solution of the equations of motion will be given by
(w, v, w)y = (W, v, w)+grad¢p . . . . . . . (8)
where v/, v/, W' satisfy the equations
(V*+E) o = 0, (VP+F) v =0, (VP+E)w =0

together with o (9)

o o ow _
e oy T

The solution of these equations suitable to the case of waves diverging from the
origin is given by

@'=2{(n+1)ﬁ_l(m)%§ﬂ s 2“%1(7@»)8 <2n+1>}+2f (M)( ———zai)xn . (10),

with corresponding expressions for v" and «’. Here w, and x, are solid harmonics of
positive degree n, and f, (kr) is a function of k» given by the relation

O =(- 7 F=m@-w@ . ..,

where ¥, ({) and v, ({) satisfy the relations

nO=(-72 2 w@=(- )

The general formulee for s, (), ¥, (), and f, (), are

(13),

— 1 gz
¥ (0) = 1'3.5_”(2%1){1”2(2%3) 2.4, (2n+3) (2n+5)

e
\If,,(?;)=1'3'5”'(2”—1){1— 1§ } (1),

e 2(1—2n) 2.4.(1— 2n) (3—2m)
‘ n.(n+1)  (n—1)n(n+1) (n+2) 1.2.8...2n
Sl = "“{H 2l 2.4.(L) +”.2.4.6...2’}7/(L€)n} - (18).

The functions 2 (0), .. (), and £, ({), all satisfy recurrence formulee of the types
Poll) = =lhuna (), WD)+ 1) () = dua()) - (16),(17);

these will be found useful hereafter in reductions.
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Returning now to the consideration of the equations of vibration, we find from (8)
and (10) that the general solution suitable to divergent waves is given by

. _ 0 3 0w, _ 72 mm+3 " _a_<_w’i_>}
u = ;)_m_ + n§0 {(71/+ 1).](;,_1 (k?") o nk®r ﬁz+1 (k’) ) oz \p2 1

< 0 0
$3 A (2T s,

n= ay
with corresponding expressions for v and w; ¢ here represents the general solution of
(7) suitable to divergent waves.
Hence

¢=é0f,,(hr).q,’>n N ¢ 1))

where ¢, is a solid harmonic of positive degree n.
If the motion is in planes through the axis of z, and is symmetrical about that
axis, the solution takes the form

a S a n 2,.2n+ 3 a n
=0t 3 {(n+1)fn_1 (kr) 00 ke *ﬁﬂ(kq«)ég_c(;;’m)} .. (20,

n=0

with corresponding expressions for v and w. Further we have

¢=§0A,, £y Po(w), @, =B P (w) . . . (21), (22),

where A, and B, are arbitrary constants.

‘We write as before .
k= e Ve, where A= (o) . . . . (23),(24).

From (15) it is seen that £, () contains the exponential factor e~ ®M"r op ¢=thvav
consequently since Ar becomes very great within a short distance of the origin, it is
clear that, at a moderate distance from the origin, those parts of the expression (20),
which depend on the functions f, (kr), become inappreciable and may be neglected.
Hence, at a sufficient distance from the origin, we may write

(u, v, w) = grad ¢,  where ¢ = 3 A, £, (k) P, (u).

§ 7. The Incidence of Plane Waves of Sound wupon an Obstructing Sphere.—We
may now consider the effect of a spherical obstacle upon a train of plane waves of
sound. Suppose the centre of the obstructing sphere to be at the origin, and the
sound to be propagated in the negative direction along the axis of x; then, as before,
we may assume for the incident waves

(%o, Vo, wy) = grad ¢y, where ¢,=e¢*. . . . . (1), (2).
2 L2
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Expanding in terms of the functions v, we obtain

by = § @n+1) W, ()" Py(w) . . . . .. (3).

The scattered waves will be symmetrical about the axis of , and so we may assume
for them

(1, o0, 103) = grad it $ {(n+ 1) foy (k) grad w,— k23 f,, (kr) glad( 2>} L (4),
n=0
where
b, anOA"ﬁ (hryr"P, (1), w,=BaP,(n) . . . . (5),(6)
Now, by means of the recurrence formulz, it may be proved without difficulty that

2 (a0 rey = gl L Loy e in 2 (2L o).

At the surface of the spherical obstacle » = o, we must have
Ug+u, = 0, Vo+vy = 0, wy+w; = 0.

Hence, when » = a, we have

grad (¢o+ 1) + 2 {(n+ 1) fo-1 (k7) grad w,—nk*r**%f,., (kr) grad ( 2n+1>} = 0.

Introducing the expressions given above for ¢, ¢, w,, we obtain for all values of n,
when r = o,

grad {(2n+1) oh"g, (hr) ¥ P,} + grad {A, f, (hr)7"P,}
+ (n+1) foos (k) B, grad (”P,) —ak 3 £, (kr) B, grad < f’+1> 0.
Hence, by means of the identity (7), we find that the following expression
o [%-l (ha) 2 (WP ) () & < P)]
bt [ Foy (k) 2 (7P, + B, (ha) 2 < P, ﬂ
2n+ 1 n n—1 a 7 n+l ’l"n+l
+B, [(n+ 1) foos (k) 2 (PP = a0 () & < Plﬂ

and two other similar expressions must vanish, when » = q, for all values of n.
These three conditions will be satisfied if

Afi (hat) = —p(ha) . . . . . . . . . (8),
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and if for all values of n> 0,

A, foor (ha) +B, (n+1) fooy (k) = — oy (hat) 1

1
2n+1

(9).

1 ; npn .
o A0 s (h) = Bk (k) = — W0 (ha)J

These equations (8) and (9) are sufficient to determine the various constants in the
expression (4) for the scattered sound. In the process of approximating to the values
of these constants we shall limit ourselves, as before, to the case when Aa is a small
fraction ; in other words, we shall suppose that the radius of the obstacle is small
compared with the wave-length of the incident sound. We shall also suppose that
the gas in question is the air of the atmosphere. This will make ovfc® a small
fraction for all wave-lengths within the limits of audibility.

With this assumption we may write, as before,

hzg(l—%—wa-/cz) R ¢ 1))

Eliminating A, between the equations (9), we obtain
B, {(n+1) B*a?fy i1 (hav) frm1 (kat) +0fres (hat) B2P fyin (Rar)}
= =k B (Y (hat) fur (ha) =i (hat) fooy (ha)} . (11).

Now with the help of a well known result in the theory of Bessel functions it may
be proved that

Y1 (ht) furr (hat)=sr (h@) foma (har) = (2n+1) B™EF g~ En09),
Hence equation (11) takes the form
B.{(n+1)l*a*f, 11(ha) fusr(ka) +nfo (ha)Pa’f, n(ka) } = — (20 + 1)ohm A= D, g=@n4 D (12),

Retaining only the principal term in the coefficient of B,, we may write approxi-
mately

2n+2)! ahn
B (1) AR s (h) = (204,
whence we have
B, =—vht 2l 1 o (13)
" (n+1) (2n) ! foms (ka) o ’

to the same degree of approximation.
Next eliminating B, between the equations (9), we obtain

1
2n+1

A, [(n+1) BaPfrs1 (hat) fu-y (ka)+nfomy (ha) KBa?fen (k)]
U [y () By (k) (1 1) B () foms (B)] - (14),
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Hence by use of the expressions (13) and (15) § 6 for ¢, ({) and £, ({), we have
approximately, when ha is small, for all values of n>0,

A _ _thn n h2n+1 . a{2n+1
" n+11%. 8 ... (2n—1)

B’ fin (k@) [frey (ka) . . . (13).

We shall find it necessary to obtain a closer approximation to the value of A,.
Writing # = 1 in (14) we have

FA (2WPa*fy(ha) fi(ka) + fi( ha) P’ fy(ka) } = — Lh{x,bo(ha)k%%(ka) + 2l a* P hat) fo(ka)} . (16).
Now from (15) § 6 we have approximately, since ha is small,
Jo(ha) = h7'a™t (1—ha—5Ra’), 2Ra*f, (ha) = 6h~%a™® (1+1ha® ++ih'a?).
Substituting these expressions in (16) and making use of (13) § 6, we obtain

2A,h7%0 7% = b [1 -8k a7 =8k a2~ 1Pa® ($5+ 3k *a ™ — 8k a2 — 3k 0 ™)
—10Pa® (Ju+ 2k a7 = 5k o — 6k + 8k e ™))
Writing Aae™ "~ for ka we obtain finally
A, = P [3 /20 0 + 3N o+ %G (BN PP+ 8,/ 2N 0 h)
—10Pa® (3+ /2N a7 + 3, /20 Pa P =3\ a )]
+othta® [1+3,/20 e =102 (3 +3,/2V a3+ 3N "a ™)
— 30 (/2N '+ 5N PP =8, /20 %) . . L (17).

By a similar process we obtain from (8),
Ay = =P (1-3Wa®+ %% . . . . . . . (18)

§ 8. Having obtained approximate values for the various constants involved in the
expressions for the secondary waves, we may now proceed to estimate the additional
loss of energy consequent upon the presence of the obstacle. The method adopted is
exactly similar to that of which we made use in the case of cylindrical obstacles.
As above, it is easily seen that the total additional dissipation of energy due to the
presence of the obstacle is given by

H]aoqlds+ﬂpl%d8 R ¢

where the suffixed letters have the same meaning as in § 4, and the integration is to
be taken over the surface of a sphere of radius R concentric with the obstacle. As
before, we shall suppose that R is great compared with the wave-length of the
incident sound, and yet such that ¢®wR/c® is a small fraction. By this assumption we
are enabled to neglect the imaginary part of 2R and also to regard the motion as
sensibly irrotational at the boundary » = R.
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Now, at the external boundary » = R we may write approximately

Rd)l = § [Anh"(rﬁl). L"Pn (#) e;(at—hR)]
n=0

where square brackets are used to denote that the real part only of the expression so
enclosed is to be taken into the account.
Hence we obtain ‘

R}h =—po % [Anh—(n+l)bn+an (/") ) ez(at—hR)], qu =} § [Ank—(n+l)bn+1 . P, (l’“) eL(ct—hR)].
n=0 0

n=

Combining these results we find

R (pii+pig0) = (—poo 90+h100)n§0 [AL7CD IR, (u) @] (2).
Again we have from (3) § 7, since AR is large,

| R, =§0 {(2n+1) AP, (u) sin (AR —4nm) cos (ot +Fnmr)}.
Hence we have _

Rp, = poo 3 {(2n+1) h7'P, () sin (hR—4nar) sin (ot +nm)},
n=0

Rqo = — h 3 {(2n+1) h™'P, () cos (AR —Lnm) cos (at+4nm)}.
n=0

Combining the two last results we find
R (—pooqo+hpy) = poo ?0 {(=) (2n+1) P, (u) cos (ct—hR)}.

Substituting this result in (2) and integrating over the surface of the sphere » = R,
we obtain ‘

j j (p:go + o) dS = dmpyor 3 [(=)* A h0% cos (ot—hR) =7,
n=0

of which the mean value is

2mpoor 3 [(=V AR L L ().
n=0

This last expression then represents the loss of energy to the primary waves in
consequence of the presence of the obstacle. From the value of A, obtained in (15),§7,
we see that the summation (3) consists of a series of terms arranged in descending
order of magnitude. Consequently, in determining its value we may limit our
attention to the first two terms. Hence the total loss of energy to the primary
waves is given very approximately by

Smpoh [Adh ™+ ABT . . . . . . ... (4)
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264 MR. C.J. T. SEWELL: EXTINCTION OF SOUND IN A VISCOUS ATMOSPHERE
Now, from (17) and (18), § 7, we have

[Agh~+ Ak~ = $ha® {3 /2. N a4+ 60202+ 81%a? (A0~ + . /21" a~)
I (G4/2N a7 48 /NP =8N . L. (5),

Let us first consider the case when Ao is small. Since A’/ or ow/c® is always small,
it follows from (5) that in this case we may write approximately

[Agh~*+ A~ = La? <6 L 43 /200" C>,

When A is great, it is necessary to include one other term of (5), and we may in
general write in this case

\

[Aph2+AL~%] = Lo? (go4a4/c4+3¢2a’/’ey‘/a/c+6 :;V?) )
Comparing this last result with that obtained in the case when \a is small, we see
that we may take it as a sufficient approximation in almost all cases. For small
values of the radius the first term in (6) will be negligible.
Substituting from (6) in (4) we obtain for the total loss of energy to the primary
waves the expression

%‘Poo'z/cﬂa2 . <%0,4a/4/04+ 3 \/20'1/21/1"‘2/04— 6 %)

Now the energy incident upon the obstacle in the primary waves is given by
$poo?[ema?, and hence the ratio of the lost energy to that incident upon the obstacle is

3\/20'1/2v1/2/c+6£:—i+%o“‘a“/c“ R (4}

The first two terms of this last expression represent the proportion of the incident
energy lost by friction. The last term of (7) gives the proportion lost by scattering
to a distance, and is the same as is obtained in the theory of a frictionless air.

When Ao is small, the most important term of (7) is the second 6 -;0—&. Hence we

see that in the case of small obstacles the ratio of the lost energy to the incident
energy varies inversely as the radius of the obstacle, and consequently tends to become
very great as this radius is diminished. On the other hand, the actual amount of
energy lost varies directly as the radius of the obstacle, and diminishes with the
radius. It is to be noticed that in the case of sufficiently small obstacles the energy
lost to the primary waves is independent of the wave-length of the incident sound.
When \a is great, the most important term of (7) is the first 3,/20""*fc. Hence
we see that in this case the ratio of the lost energy to that incident upon the obstacle
is very nearly independent of the radius of the obstacle, provided the order of
magnitude of this ratio is altered by the viscosity. Consequently for sufficiently large
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obstacles the loss of energy to the primary waves is proportional to the surface of the
obstructing sphere. There is, it will be noticed, a distinct similarity between these
results and those obtained above in the case of cylindrical obstacles.

The expression (7) has been evaluated in a number of different cases, and the results
are arranged on p. 266 in tabular form. K denotes the expression (7) or the ratio of
the lost energy to that incident upon the obstacle, and \ represents the wave-length
(measured in centimetres) of the incident sound.

§9. Application of the above to the Problem of a Large Number of Spherical
Obstacles.—Let us consider now the loss of energy to the primary waves when these
are incident upon a large number of spherical obstacles. We shall suppose that there
are n small spheres per c.cm.; the validity of our argument will depend on the
volume occupied by the obstacles being small compared with the total volume.
Consequently gnma® must be a small fraction.

At a distance » from the centre of any one of these spherical particles, great
compared with the wave-length of the incident sound, the secondary waves due to
that particle will be sensibly irrotational, and will be given very approximately in all

cases by
¢ = Ay fy (W) + AL fy (hr) rp.

Since Ar is great, we may write

e—zhr

e_LhT
ﬁ) (h’}") = _/—[;)“—, JI; (]7/}") =1 W’

and ¢, takes the form
¢1 = (th_1+A1]?/—2L/L) e'—“hr r ;

which, along the course of the primary waves (u = —1), reduces to
$r= (A=A efr o . o 0 o o (1)

Consider now the spheres which occupy a thin stratum dx perpendicular to the
course of the primary waves. Let P be any point in this stratum, and let O be the
point where the vibration is to be estimated at a great distance from the stratum.*

If AP =2, the element of volume is 2mx.dx.dz, and consequently the number
of spherical particles in it is 2wnz.dw.dz. Also, if OP =, AO = —a, then
™ =2*+2° and rdr = zdz.

Now by (1) the resultant at O of all the secondary vibrations which issue from the
stratum is given by

2mnda | (A7 =A%) e dr

Remembering that the angle AOP is to be regarded as very small, we see that the

* See figure, p. 254.
VOL. CCX.—aA. 2 M


http://rsta.royalsocietypublishing.org/

A

B

/

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

L N

a

A

Y
A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

266 MR. C.J. T. SEWELL: EXTINCTION OF SOUND IN A VISCOUS ATMOSPHERE

T T T T T YT T
CO0000000000O0OOOOOD
o = = e o~

CQv—tmwl‘l‘l\wwi.D@leQ\QlQ\Q\OIQKDIQ

MCOO‘INNC\‘I(ﬂG\‘INNNNQ10]O‘IC\‘101<NCJN

K.

a = 001 cm.

OO0
— QNN <H 1O O =~

90
100
200
300
400
500
600
700
800
900

1000

T T TS T T TP T T T T TR T

CO00000000DO0O0OOO

B B T o B B T o B TR T B o B O e T e B B e B B B e |

© eI H— 000 © 10 O H M T
™

|
o
i
r—i
mbwmxomwﬁiﬁvﬂmmmmmm [3p]

|
(=)
—
e

K
11'9 103

a = *01 cm.

5
10
0
30
40
50
60
70
80
90
100
200
300
400
500
600
700
800
900
1000

TTT?L\F??CIQOIQIIIIIIIIII
8888222222222 222222
QO ONONVLIO A= NHNA~O O
=10 <K 0O 6D O G CF G G ok ek 1ok d

9:9 1073

*1 em.

a =

IO O OO0 QO
eI HIO OO

100
200
300
400
500
600
700
800
900
1000

AT A A A R A A0 A
e e e e e e e e e e e e e
L B B e B e B e B B TR e B B e B e B B e B B T
@N@L\#‘MHI@NF‘OO}OOOOL\-].\-

CQCONNQ‘IC\‘IQ1'—*'—*!—“—4

5'4 10-2

a = 1 cm.

30
40

0
60
70
80
90

2-7 1073
1-5 1073
11 1073
9 1073
9 1073
-8 1073
-7 1073
710

a = 10 cm.

A
300
400
500
600
700
800
900
1000



http://rsta.royalsocietypublishing.org/

|
P

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)
A

a
\

/
S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

BY SMALL OBSTACLES OF CYLINDRICAL AND SPHERICAL FORM. 267
resultant at O of all the secondary vibrations coming from the stratum dx is given by
—=2mnde WAL+ AL e oL (2),

where the time factor ¢’ has been restored.
Now, from the results obtained in § 7 for A, and A,, we find

AP+ AT = Lha {8, /20 a7 + 6N P T 4+ 3R (N Pa P+ /2N Pa )
R (B4 /20 + 8, /20" — BN ta )}
+1ha® {3+ 3/2V a7 + P07 (5 —3,/20 a7+ 300 Y)
—31W%a® (/20 a7+ 5N Pa TP -3, /20 "%a 7).
Except for very minute obstacles, it will be sufficient to write
AR+ AT = 2ha’ {3/ 2N e + 6N Pa T+ FAPaP + Suha® (4520 e Y.

Substituting this last expression in (2), we obtain for the resultant of all the
secondary vibrations coming from the stratum da

—tnm deoa®[c[(34/2N a7 + 6N 20+ FhPa’) —i—b (3+38,/2\1g™Y) ] e taton)
of which the real part is
—dnm dx. oa’[c{(34/20 a7 + 6\ "%a "+ Ih’a®) cos (hx +at)
—($+3y/2 "o ) sin (hx+at)} . (3).
To this is to be added the corresponding expression for the primary wave
¢ = cos (hx+ot).

The coeflicient of cos (hz+ ot) is thus altered by the obstacles in the layer da from
unity to

1—Linmo? Jl 6 .0%6 +84/20""*[c+ Fo a4/c4} dax
Thus, if E be the energy in the incident wave, we have
dE/E = —nma? {6 cla +34/ 20-1"21/1/2/0—%%0“(»“/0“} d

Integrating this, we obtain
E = Eoehax,

where E, is the energy in the primary waves at incidence, and a is given by
o = nra’ (6 ;;% +34/ 202 fc+ 5040&4/04) Coe e e ()
2 M2
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268 MR. C. J. T. SEWELL: EXTINCTION OF SOUND IN A VISCOUS ATMOSPHERE

If the radius of each obstacle is measured in centimetres, then the reciprocal of e,
as determined by (4), will give the distance travelled by the sound before its intensity
is diminished in the ratio of 1fe. If the radius of each small sphere is 107 cm., and
there are 10° per c.cm., then gnara® will be a small fraction, and the formula (4) will be
applicable. With these numerical values we obtain, in the case of sound of wave-
length 50 cm., @« = 85 1072 Consequently ™' = 11'8 em.; hence, after passing
through a thickness of less than 12 cm. of such a medium, the intensity of the
sound will be diminished in the ratio of 1/e.

The formula (4) should be applicable to fogs, as we may regard the water particles
as approximately fixed, since their inertia i1s so much greater than that of the
surrounding air. I am indebted to Prof. Lams for the following information from
HaNN’s “ Meteorologie’ : “In a dense fog the amount of water may vary from about
3 to 10 gr. per cubic metre. Assuming that the diameter of the drops is ‘02 mm.,
and a cubic metre contains 4'5 gr. of water, this is calculated to give 10° drops per
cubic metre, and therefore 10* per cubic centimetre.” With these numerical data the
formula (4) gives o™" = 1180 metres, and consequently it follows that the fog would
not interfere appreciably with the propagation of sound. But if the diameter of the
drops could be as small as ‘002 mm., a fog of the same density would contain 10°

drops per cubic centimetre, and «'

would be nearly equal to 14 metres, and
consequently the sound would be damped very quickly by the fog.* On the other
hand, TYNDALL'S observations appear to show that the presence of fog is not
prejudicial to the audibility of sound.t

The coefficient of sin (hx+ot) in (8) gives the refractivity of the medium as
modified by the spherical particles. If & be the retardation due to the spheres of

the stratum dz,
8 = dnw.de.a’(§+3 /2N "a™).

Hence, if u be the refractive index of the medium as modified by the particles,

p=1=p (3432070,

where p denotes the ratio, assumed small, of the volume occupied by the particles to
the total volume.

Hence finally we have o
~ p—l=pt+3 /2@ et . . . . . . . . (b)

For sound of wave-length 50 cm. incident upon a medium in which there are 10°
spherical particles per cubic centimetre, each of radius 107 em., we obtain

p—1=3.7.107%

* See, however, note at end.
T RAYLEIGH, ‘ Treatise on Sound,” Vol. IL, p. 137.
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Note, April 12th, 1910.

Prof. LarMOR has kindly pointed out to me that it is not legitimate to apply the
formula (4) to fogs without further consideration. Although the inertia of the water
particles is so much greater than that of the surrounding air, yet in consequence of
the viscosity of the air it does not follow that we may regard the water particles as
approximately fixed. I have investigated the problem of a free spherical obstacle.
The analysis is very similar to that in the problem of the fixed obstacle. The
secondary waves diverging from the obstacle are affected only in the terms containing
spherical harmonics of the first order. If Ue* is the velocity of the obstacle along
the axis of @ we obtain

A S (ha)+B2f, (ka) = =y (ha)+U . . . . . . (1),

§ Ao’ [, (ha) =Bl a’fy (ka) = —dbPaPPy (ha) . . . . . (2),

together with ;
MU= [[p.ds. . . ... . ... @

where p,, is the component of the stress across the surface of the obstacle in the
direction of the axis of « and the integration is taken over the surface of the obstacle.
The last equation reduces to

U=§3[U+3Bl{3ﬁ(m)—ﬁ(ka)}]. @

where p, is the density of the obstacle.
Eliminating A; and B, between the equations (1), (2), and (4) we obtain approxi-
mately when ko is small

U{ Yy k-—za—2} W )
P1 P

Hence, if L be the ratio of the amplitude of the motion of the obstacle to that of
the waves of sound, we have :

L = {1+‘8é1‘ (pl/p0)2)\"4a'4}_1/2 . . . . . . . (5).
Again, eliminating B, and U from (1), (2), and (4) we obtain approximately
A = = bataaif, (o) | o (ko) =32 (5, ), )y |
P

Hence we obtain without difficulty when ko is small

[A] = [AL {L+5 (afpdN 0™} T . L (6)

where [AJ, [A.], denote the real part of the value of A in the case of the fixed and
free obstacle.
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270 EXTINCTION OF SOUND IN A VISCOUS ATMOSPHERE, ETC.

The last relation may be written in the form
[AJ=[AL0O-L) . . . . . . . . . (7).

It follows that the ratio of the lost energy to that incident upon the obstacle is
given by

%—o4a4/c4+<8\/20-‘/21)1/2/c+6%>(1——L2) R €))

Extending this result to the case of a number of free spherical obstacles we obtain,
instead of (4), § 9
a = nra’K

where K represents the ratio of the lost to the incident energy given in (8).

It follows from this investigation that the results obtained in this paper are only
applicable to fogs if' § (p)/p;) A*a™* is a small fraction. This condition is satisfied for
obstacles of radius 1072 em., and also for obstacles of radius 1072 em. when the wave-
length of the incident sound is not too long. In the case of obstacles of radius
107* em., however, this condition is no longer satisfied; L approaches close to unity
for all wave-lengths, and consequently « and K are very small. Hence, if the
diameter of the drops of water in a fog is as small as ‘002 mm., such a fog does not
interfere appreciably with the propagation of sound, and a result is obtained in
agreement with TYNDALL'S observations.

I append a table giving the values of L in a number of different cases. When the
wave-length of the sound is very great, or when the obstacle is extremely minute, the
obstacle vibrates with the air surrounding it.

a = 1073 cm. a=10"*cm.
~ A - /__'—"A"‘"——\
. L. A L. . L.
5 ‘019 200 ‘595 5 877
10 037 300 746 10 961
20 074 400 833 20 ‘990
30 ‘110 500 877 30 ‘996

40 ‘147 600 ‘918 100 9996
50 ‘182 700 935 © 1°000
60 217 800 ‘955

70 251 900 ‘961

80 284 1000 971

90 316 © 1:000

100 347 o
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